Bayesian quantile regression and statistical modelling represent a growing paradigm in contemporary data analysis, extending conventional regression by estimating various conditional quantiles rather ...
We develop a Bayesian method for nonparametric model—based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the ...
In this paper we propose a semi-parametric, parsimonious value-at-risk forecasting model based on quantile regression and readily available market prices of option contracts from the over-the-counter ...
Some of you may have come across a growing number of publications in your field using an alternative paradigm called Bayesian statistics in which to perform their statistical analyses. The goal of ...
A novel Bayesian Hierarchical Network Model (BHNM) is designed for ensemble predictions of daily river stage, leveraging the spatial interdependence of river networks and hydrometeorological variables ...
We propose a Bayesian semiparametric methodology for quantile regression modelling. In particular, working with parametric quantile regression functions, we develop ...